3.0 Life Cycle Costing .. 56
 3.1 Introduction... 56
 3.1.1 The Future Value of Money – Net Present Value...... 56
 3.1.1.1 Monthly Payments.. 59
 3.1.2 Loading... 60
 3.1.3 Lifetime.. 60
 3.1.4 Sensitivity Analysis.. 60
 3.2 Application to an Electrical Installation..................... 60
 3.2.1 Installation Design... 61
 3.2.2 Installation Costs... 61
 3.2.3 Recurring Costs.. 61
 3.2.3.1 Maintenance Costs....................................... 61
 3.2.3.2 Energy.. 61
 3.2.4 End of Life Costs... 68
 3.3 Conclusion... 68

4.0 Short-Circuit Effects.. 69
 4.1 Introduction... 69
 4.2 Short-Circuit Heating of Bars................................... 69
 4.3 Electromagnetic Stresses... 70
 4.3.1 Estimating the Forces Between Parallel Sets of Bars... 72
 4.3.1.1 Round Bars... 72
 4.3.1.1.1 Triangular Array....................................... 73
 4.3.1.1.2 In-Line Array.. 74
 4.3.1.2 Bars of Rectangular Section.......................... 74
 4.4 Mounting Arrangements.. 76
 4.4.1 Maximum Permissible Stress................................ 76
 4.4.1.1 Moment of Inertia.. 77
 4.4.2 Deflection.. 78
 4.4.3 Natural Frequency... 78

5.0 Busbar Profiles .. 79
 5.1 Introduction... 79
 5.2 Reasons for Using Profiles..................................... 79
 5.2.1 Skin Effect Reduction....................................... 79
 5.2.2 Weight and Cost Saving.................................... 79
 5.2.3 Integrated Fixings and Mountings........................ 80
 5.2.4 Retention of Intellectual Integrity....................... 80
 5.3 Economics of Profiles... 80
 5.4 Practical Profiles.. 80
 5.4.1 Manufacturing Process..................................... 80
 5.4.1.1 EN 13605... 80
 5.4.2 Design for Manufacturing................................... 84
 5.4.2.1 Wall Thickness.. 84
 5.4.2.2 Avoid Sharp Corners..................................... 84
 5.4.2.3 Symmetry.. 84
 5.4.2.4 Be Compact.. 85
 5.4.2.5 Avoid Deep Narrow Channels.......................... 85
 5.4.2.6 Avoid Hollow Chambers................................ 85
 5.4.3 Functional Design... 85
5.5 Electrical Design Considerations .. 85
5.5.1 Skin Effect .. 85
5.5.2 Thermal Dissipation .. 86
5.5.3 Jointing and Mounting ... 87
5.5.4 Short Circuit Performance -
 Moment of Inertia .. 88
5.6 Calculation of Moment of Inertia of Complex Sections 88

6.0 Jointing of Copper Busbars 90
 6.1 Introduction ... 90
 6.2 Busbar Jointing Methods .. 90
 6.3 Joint Resistance ... 91
 6.3.1 Streamline Effect .. 92
 6.3.2 Contact Resistance .. 94
 6.3.2.1 Condition of Contact Surfaces 94
 6.3.2.2 Effect of Pressure on Contact Resistance 94
 6.4 Bolting Arrangements .. 98
 6.4.1 Joint Efficiency ... 99
 6.5 Clamped Joints ... 101
 6.6 Degradation Mechanisms ... 101
 6.6.1 Oxidation .. 101
 6.6.2 Corrosion .. 102
 6.6.3 Fretting ... 102
 6.6.4 Creep and Stress Relaxation 102
 6.6.5 Thermal Expansion .. 102
 6.7 Conclusion ... 102

Annex: Coatings ... 103
 A1.0 Introduction ... 103
 A2.0 Reasons for Coating .. 103
 A2.1 Coating to Provide Electrical Insulation 103
 A2.2 Coating to Inhibit Corrosion 103
 A2.2.1 Metal Coatings .. 103
 A2.2.2 Non-Metallic Coatings ... 103
 A2.3 Coating to Increase Current Rating 103
 A2.4 Coating for Cosmetic Purposes 104
 A2.5 Coating to Improve Joint Performance 104
 A3.0 Methods of Coating .. 104
 A3.1 Factory Application Methods 104
 A3.1.1 Extrusion ... 104
 A3.1.2 Powder Coating .. 105
 A3.2 On-Site Application Methods 105
 A3.2.1 Heat-Shrinkable Sleeve 105
 A3.2.2 Painting ... 105
 A3.2.2.1 Alkyd Paints .. 105
 A3.2.2.2 Two-Part Epoxy ... 105
 A4.0 Inspection and Maintenance 105

Tables

Table 1 Properties of Typical Grades of Copper and Aluminium 7
Table 2 Properties of 100% IACS Copper ... 7
Table 3 Implied Properties of 100% IACS Copper 8
Table 4 Comparison of Creep Properties of HC Copper and Aluminum 12
Table 5 Comparison of Fatigue Properties of HC Copper and Aluminium 12
Table 6 Minimum Bend Radius of HC Copper and Aluminium 13
Table 7 Self-extinguishing Arches in Copper and Aluminium Busbars 13
Table 8 Discount Factors for Various Discount Rates 57
Table 9 Maximum Working Current for a Range of Busbar Sizes 62
Table 10 Resistance and Power Loss at 500 Amps 62
Table 11 Energy Cost Per Metre for Various Widths of Copper Bars at 500 A Load 63
Table 12 Present Value (€) per Metre of Bar 67
Table 13 Power Factor and Peak Current .. 71
Table 14 Tolerances for Dimensions b and h for \(b_{\text{max}} \)
 or \(h_{\text{max}} < 20:1 \) .. 82
Table 15 Tolerances for Dimensions b and h for \(b_{\text{max}} \)
 or \(h_{\text{max}} > 20:1 \) .. 82
Table 16 Thickness Tolerances .. 82
Table 17 Coefficient for Twist Tolerance 84
Table 18 Maximum Sizes of Profile According to Two Manufacturers 84
Table 19 Nut Factors for Different States of Lubrication 96
Table 20 Proof Strength and Coefficient of Thermal Expansion for Copper and Typical Bolt Materials 96
Table 21 Typical Thread Characteristics 97
Table 22 Typical Busbar Bolting Arrangements 99

Figures

Figure 1 Effect of small concentrations of impurities on the
 resistivity of copper .. 8
Figure 2 Effect of cold rolling on mechanical properties and
 hardness of high conductivity copper strips 10
Figure 3 Typical creep properties of commercially pure
 copper and aluminium .. 12
Figure 4 Heat dissipation by convection from a vertical surface
 for various temperature rises above ambient 16
Figure 5 Convection loss from typical bar sections 17
Figure 6 Heat dissipation by radiation from a surface assuming relative emissivity of 0.5 and surroundings at 30°C 18
Figure 7 Radiation loss from typical bar sections 19
Figure 8 Convection and radiation losses at various
 temperatures ... 20
Figure 9 Total heat losses for a single bar of various
 heights against temperature rise 20
Figure 10 Total heat losses for each bar of a parallel pair of
 various heights against temperature rise 21
Figure 11 Parameter p versus cross-sectional area in mm2 for typical copper at 80°C..........................23
Figure 12 Resistivity of typical HC copper (101.5% IACS) as a function of temperature............................25
Figure 13 Skin depth of typical HC copper (101.5% IACS) at 50 Hz, 60 Hz, 400 Hz as a function of temperature...25
Figure 14 dc resistance of typical HC Copper (101.5% IACS) versus area at 20°C and 80°C..........................26
Figure 15 Plots of shape factor versus γ..29
Figure 16 Factor A for round bars as a function of γ..30
Figure 17 Proximity factor, S_p, for single phase systems with parallel round bars...31
Figure 18 Mean proximity factors for flat arrangement of round bars carrying balanced three phase currents...32
Figure 19 Mean proximity factors for delta arrangement of round bars carrying balanced three phase currents...33
Figure 20 Shape factor for tubes..35
Figure 21 Shape factor for tubes with low values of shape factor..35
Figure 22 Shape factor for tubes..36
Figure 23 The shape factor computed from the Bessel function formula using $\nu(\nu_d/\omega)$ as the frequency parameter...36
Figure 24 Shape factor as a function of the ratio μ/R..37
Figure 25 Factor A versus $\beta = \nu/a$ for values of $g = t/b$..38
Figure 26 Proximity factor for single phase tubes as function of the factor A for values of $\eta = s/2a = s/d$........38
Figure 27 Proximity factor for single phase tubes...39
Figure 28 Factor A for proximity loss factor as a function of $g = t/b$ for various values of $\beta = t/a$..............40
Figure 29 Proximity factor, S_p, for round bars at various spacings designated by η.................................41
Figure 30 R_{sc}/R_{sc} as a function of the parameter ν^2/R_{sc}..43
Figure 31 R_{sc}/R_{sc} as a function of the parameter ν^2/R_{sc}..43
Figure 32 Shape factor, R_{sc}/R_{sc}, as a function of the parameter ν^2/R_{sc}..44
Figure 33 Shape factor versus $2b/\nu$ for various values of b/ν..44
Figure 34 Plots of the shape ratio S_{sc} versus the ratio $\frac{2}{a}$ for various values of $\frac{1}{s} = \frac{1}{s}$ for anti-parallel currents......47
Figure 35 Shape factor $S = \frac{2}{a}$ as a function of the separation s for various values of $\frac{1}{s} = \frac{1}{s}$ with ν_{sc} in $\mu\Omega/m$ and $f/n Hz$...49
Figure 36 Linear plots of R_{sc}/R_{sc} versus p where $p = 1.5853\sqrt{\frac{1}{s}}$ with ν_{sc} in $\mu\Omega/m$ and $f/n Hz$..............................52
Figure 37 Quasi logarithmic plots of R_{sc}/R_{sc} versus p where $p = 1.5853\sqrt{\frac{1}{s}}$ with ν_{sc} in $\mu\Omega/m$ and $f/n Hz$..............................55
Figure 38 Power loss versus width for 6.3 mm thick copper bars...63
Figure 39 Cost of energy loss per metre versus width for 6.3 mm thick copper bars..64
Figure 40 Total cost per metre versus bar width for 5000 hours operation at 500 A..64
Figure 41 Total cost per metre of bar versus bar width for a range of operating times.................................65

Figure 42 Total cost per metre against current density for a range of operation times.................................66
Figure 43 Estimated working temperature versus width of bar (mm) for 500 A load..66
Figure 44 Cost per metre ($€$) against bar width for a) 20 000 hours operation without discount and b) 2000 hours per year for 10 years at 5% discount...67
Figure 45 Short-circuit current waveform..71
Figure 46 Three phase system with spacings D (mm), (a) triangular array (b) inline array...73
Figure 47 Factor K for calculating the force between two bars of rectangular section...75
Figure 48 Form factor K_t, (a) low values of α/β (long sides facing each other) (b) high values of α/β..75
Figure 49 Typical copper profiles..79
Figure 50 A non-typical profile indicating the dimensions used in the standard...81
Figure 51 Measurement of straightness..83
Figure 52 Measurement of flatness..83
Figure 53 Measurement of twist..83
Figure 54 Profile cross-section showing mounting lugs and slots for bolt-head..85
Figure 55 R_{sc}/R_{sc} as a function of the parameter ν^2/R_{sc} with $f/n Hz$ and R_{sc} in $\mu\Omega/m$.................................86
Figure 56 Thermal image of two profiles under load...87
Figure 57 Hole-free joints..87
Figure 58 Calculation of moment of inertia of a complex shape..88
Figure 59 Parameters used in the calculation of moment of inertia of each element..89
Figure 60 A typical bolted joint..90
Figure 61 A simple clamped joint..90
Figure 62 A riveted joint..91
Figure 63 A soldered joint..91
Figure 64 A welded joint..91
Figure 65 An overlapped joint...91
Figure 66 Streamline effect in overlapped joints...92
Figure 67 Bolt placement in overlapped joints...93
Figure 68 Overlap joint between bars with angled ends...93
Figure 69 The effect of pressure on the contact resistance of a joint..95
Figure 70 Possible bolting techniques for copper busbars...98
Figure 71 Joint with a longitudinal slot..98

Disclaimer

While this publication has been prepared with care, Copper Development Association, European Copper Institute and other contributors provide no warranty with regards to the content and shall not be liable for any direct, incidental or consequential damages that may result from the use of the information or the data contained.

Copyright © Copper Development Association and European Copper Institute.